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The development of an ideal associated solution model concerned with complexes of various
compositions, sizes, and shapes is described. Such models were used earlier to calculate ther-
modynamic characteristics and the position of the liquidus line for binary eutectic systems as
well as those having a stable compound in the solid phase. In all the cases, the model parameters
were not adjusted but were estimated from melting temperatures of the components. The latest
studies deal with the influence of arbitrary stoichiometry associates on the equilibrium ther-
modynamic properties of liquid alloys. The application of the model to eutectic systems and
systems having an unlimited miscibility in solid and liquid states close to the liquidus has been
considered. It was shown that if the difference in melting temperatures of the components was
small, different types of fusibility diagrams were possible: eutectic diagrams, cigar-shaped
diagrams, or diagrams with upper or lower azeotropic points. Peritectic transformations could
take place if the difference in melting temperatures of the components were large.

1. Introduction

Many papers are dedicated to calculation of thermody-
namic mixing characteristics of binary alloys in terms of
associated models [1954Pri, 1982Was, 1982Som, 1982Ber,
1985Sch]. Usually these models are applied to systems hav-
ing a stable compound in the solid state. The theory of ideal
associated solutions was developed for associates of differ-
ent compositions, sizes, and shapes [1954Pri]. As a rule,
practical calculations take into account only minimum-size
associates and disregard the possibility of self-association.
Several researchers [1954Pri, 1964Keh, 1989Mor] analyzed
in theoretical terms how self-association influences thermo-
dynamic mixing functions. However, this influence was
rarely subject to practical calculations [1992Sin, 1991Iva].

A variant of the associated solutions model, which takes
into account the presence of associates having different
sizes and shapes in the liquid phase, has already been pre-
sented [1986Tka1, 1988Shu1]. The calculation of the asso-
ciated energy was reduced to pair interaction of the nearest
neighbors. This consideration was limited by taking into
account only configurational contributions to the entropy. It
was found that for an infinite-size associate (e.g., a crystal)
it was possible to obtain the energy parameter of the model
from the melting temperature of the stable compound.
Moreover, the number of properties (e.g., melting charac-
teristics, including melting diagrams), which are usually
calculated in associated models [1986Tka1, 1988Shu1,
1988Tka2, 1989Tka3, 1989Tka4, 1990Tka5, 1993Shu2,
1993Shu3, 1998Shu4], could be increased. It was also
shown that the model could be applied to any system in-
cluding a eutectic one due to the fact that it took into ac-
count self-association.

A successful use of self-associates for calculation of pure
metals and simple eutectic properties suggested that arbi-
trary-stoichiometry associates could also exist in multicom-
ponent melts. If the presence of such associates is postu-
lated, they mostly affect systems with unlimited solubility
in solid and liquid states. It was shown for simple eutectic
systems and systems having a stable compound in the solid
phase that arbitrary-stoichiometry associates affect the cal-
culated properties and the qualitative pattern of their behav-
ior.

2. Theory

Let us consider a binary system AcB1−c, whose compo-
nents form a solution with complete mutual dissolution in
the liquid phase. It may be viewed as an ideal solution of the
associates An (i), Bn (j), and AnBm (i, j, q), (n and m being
the number of appropriate atoms in the complex; i, j, and q
the number of pairs of nearest neighbors, such as AA, BB,
and AB in the complex, respectively). The energy of the
complex is the sum of energies of nearest neighbor pairs.
The entropy contains only configurational contributions.
Therefore, the mole fractions of complexes are given by the
following equations [2002Shu5, 2004Shu6]:
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complexes An,i, Bn, j, AnBm, and single atoms A1 and B1,
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respectively; �A, �B, and �AB are bond energies of nearest
neighbors pairs AA, BB, and AB taken with opposite sign
and KAn,i

, KBn,i
, and KAnBm

denote constants of appropriate
equilibria.

Consequently, the concentrations of A1 and B1 in the
solution are:
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(Eq 2)

where first summation is performed by the number of
atomic pairs AA, BB, and AB, and the second summation
by the number of atoms A and B.

From Eq 1 and 2, it is possible to find the mole fraction
of single atoms in the solution and calculate thermodynamic
characteristics of the system and the melting diagram; see,
for example, [1954Pri, 1982Was, 1982Som, 1986Tka1,
1988Shu1, 1998Shu4, 2004Shu6, 2004Shu7].

To complete the calculations, it is necessary to know the
energy parameters �A, �B, and �AB, and the number of
nearest neighbor pairs for all the associates. The energy
parameters �A and �B can be estimated from melting tem-
peratures of pure components [1988Tka2]. Then �AB re-
mains the only unknown parameter. It is possible to calcu-
late the total number of pairs in an associate on the
assumption that the local crystal structure is invariable in
the liquid phase. The model assumes a linear chain approxi-
mation for the associate structure as has been done
[1988Tka2] for a simple eutectic. This simplification allows
making up the summation in Eq 2. The properties are cal-
culated to within 10% [1993Shu3].

3. Results

The parameters �A and �B were determined from melt-
ing temperatures of the components, and the parameter
W � [�AB – 0.5(�A + �B)] was chosen as a variable. The
model allows both positive and negative deviations from
ideality to be described [2002Shu5, 2004Shu7]. The nega-
tive deviation can be arbitrarily large. If W acquires large
positive values, thermodynamic characteristics of the mix-
ture are similar to those of systems with a strong interaction
of components. A different situation is observed when W is
negative, i.e., when the formation of pairs like AB is unfa-
vorable in energy terms. The enthalpy of mixing grows at
small W as long as the configuration entropy compensates
the energy loss. The mixture enthalpy begins decreasing as
W increases further. The mixture entropy passes through the
maximum at smaller W values, while activity of compo-
nents and the Gibbs energy of the mixture changes mono-
tonically. Moreover, the model proved to be capable of
describing the situation when the mixture enthalpy is nega-
tive and components activities deviate from the Raoult law
to the positive side. Thus, the proposed model explains vari-

ous properties of solutions. For example, in the regular so-
lution model, the sign of the deviation of all properties from
ideality depends on the sign of the energy parameter. This
unequivocal dependence is not required in the advanced
model. The property value is determined from the correla-
tion between the direct pair and indirect configuration con-
tributions to the internal energy. Thus, the result depends on
the energy and melting temperatures of the components.

The associated solution melting process was analyzed in
[2004Shu6]. The solid phase was viewed as a regular solu-
tion of two components with melting points at 700 and 1000
K. The liquid in this system was an ideal associated solution
composed of associates of various dimensions and arbitrary
stoichiometry values. It was assumed that the energy pa-
rameter did not change during melting. Therefore, only one

Fig. 1 (a) Calculated and (b) experimental [Hultgren,E] Cr-Mo
phase diagram
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parameter was a variable. It was shown that the type of the
equilibrium diagram depended on the value and the sign of
this parameter. In this case, four types of equilibrium dia-
grams are possible, namely eutectic, “cigar-type,” and azeo-
tropic diagrams with both upper and lower azeotropic
points.

If the difference between melting temperatures of the
components is large, the shape of the phase diagram
changes (for example, the “cigar” becomes much thicker),
and a qualitatively new type of diagram with peritectic equi-
librium appears [2004Shu7]. In this case, the diagram with
the eutectic transformation and the diagram with the lower
azeotropic point are absent. It is possible to show that the
peritectic equilibrium can be achieved only when melting
temperatures of the components are largely different (TB/TA
> 2.25).

The calculated phase diagram of the Cr-Mo system with
the parameter W � −1300 J/mol is shown in Fig. 1. It looks
very much like the experimental diagram [Hultgren,E] in
the region of the melting temperatures. The calculated val-
ues of the azeotropic point are caz � 0.236 and Taz � 2097
K, and the experimental values are caz � 0.125 and Taz �
2093 K.
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